Chapter 6 • Allen & Kennedy, Optimizing Compilers for Modern Architectures

Creating Coarse-Grained Parallelism

Introduction

- Chapter 6: Focus on parallelism for SMPs
 - Contrast with Chapter 5 (vector and superscalar processors)
 - Focus on parallelizing *outer loops*
 - Often contain large blocks of work in each iteration
 - Thread creation, barrier synchronization expensive
 - Tradeoff: synchronization overhead vs. parallelism/load balance
 - Transformations that uncover coarse-grained parallelism
 - 1. Define or review each transformation
 - 2. Contrast with use in Chapter 5 (if applicable)
 - 3. Describe effect on dependences
 - 4. Discuss when it can/should be applied

Overview

Transformations on Single Loops

Privatization, Alignment, Code Replication, Loop Distribution & Fusion

Transformations on Perfect Loop Nests

Loop Interchange, Loop Skewing

Transformations on Imperfectly Nested Loops

Multilevel Loop Fusion

Privatization	Focus on
Loop Distribution	(1) Parallelizing sequential loops
Alignment	(2) Increasing granularity of parallel loops
Code Replication	
Loop Fusion	

Scalar Privatization (1/4)

The Transformation

Make a variable used only within an iteration private

Scalar Privatization (2/4)

Comparison with Chapter 5

- Similar to scalar expansion
 - Also useful in parallelization (p. 243)
- But privatization better for SMPs
- Like scalar expansion, not cost-free

Scalar Privatization (3/4)

Effect on Dependences

- Eliminates loop-carried and loop-independent dep's associated with a scalar
 - Like scalar expansion
 - Makes loop parallelizable

Scalar Privatization (4/4)

When to Privatize a Scalar in a Loop Body

- When all dep's carried by a loop involve a privatizable variable
 - Privatizable: Every use follows a definition (in the loop body)
 - Equivalently, no upwards-exposed uses in the loop body
 - Determine privatizability through data flow analysis (or SSA form p.242)
 - If cannot privatize, try scalar expansion (p. 243)

DO I = 1, N
T = A(I)
A(I) = B(I)
B(I) = T
ENDDO

Array Privatization

Make an array used only within an iteration private

DO I = 1, 100	
T(1) = X	
DO J = 2, N	
T(J) = T(J-1)+B(I,J)	
A(I,J) = T(J)	
ENDDO	
ENDDO	

```
PARALLEL DO I = 1, 100
PRIVATE t(N)
t(1) = X
DO J = 2, N
t(J) = t(J-1) + B(I,J)
A(I,J) = t(J)
ENDDO
IF (I==100) T(1:N) = t(1:N)
ENDDO
```


Overview of finding privatizable arrays: p. 244

Loop Alignment (1/4)

Effect on Dependences

Problem: Source computed on iteration prior to sink

DO I =	2, N
A(I)	= B(I)+C(I)
D(I)	= A(I-1)*2.0
ENDDO	

Solution: Compute sources and sinks on same iteration

Loop Alignment (2/4)

The Transformation

Naive implementation

DO I = 2, N A(I) = B(I)+C(I) D(I) = A(I-1)*2.0 ENDDO DO i = 1, N
IF (i>1) A(i) = B(i)+C(i)
IF (i<N) D(i+1) = A(i)*2.0
ENDDO</pre>

 Overhead due to extra iteration and conditional tests can be reduced...

Loop Alignment (3/4)

The Transformation

Improved implementation (Eliminates extra iteration & conditionals)

DO T =	2	. N
A(T)	=	B(T)+C(T)
D(I)	=	A(I-1)*2.0
ENDDO		

Loop Alignment (4/4)

When NOT to Apply

- Alignment cannot eliminate a carried dependence in a recurrence (p. 248)
- Also alignment conflicts: two dependences can't be simultaneously aligned

When TO Apply

• Applied along with *Code Replication*, so let's discuss that first...

Code Replication (1/2)

Effect on Dependences

Want to eliminate alignment conflicts by eliminating loop-carried deps

The Transformation

 Replace the code at the sink of a loop-carried dependence with the expression computed at the source

Code Replication (2/2)

DO I = 1, N
 A(I+1) = B(I)+C
 X(I) = A(I+1)+A(I)
ENDDO

DO I = 1, N A(I+1) = B(I)+C IF (I==1) THEN t = A(I) ELSE t = B(I-1) + C END IF X(I) = A(I+1)+t ENDDO The Transformation

Alignment & Replication

Effect on Dependences

Both eliminate loop-carried dependences

When to Align Loops and/or Replicate Code

- Obviously, replication has a higher cost; alignment is preferable
- "Alignment, replication, and statement reordering are sufficient to eliminate all carried dependences in a single loop that contains no recurrence and in which the distance of each dependence is a constant independent of the loop index." (Theorem 6.2)
 - Proved constructively
 - read §6.2.4 for full detail

Loop Distribution ("Loop Fission")

Also eliminates carried dependences

- Smaller loop bodies ⇒ Decreased granularity
 - This was good in Chapter 5 (vectorization); bad for SMPs
- Converts to loop-independent deps between loops
- \Rightarrow Implicit barrier between loops \Rightarrow Sync overhead
- ∴ Try privatization, alignment, and replication first
- Use to separate potentially-parallel code from necessarily-sequential code in a loop
 - Can recover granularity:
 - Use maximal loop distribution, then
 - Recombine ("fuse") loops...

Loop Fusion (1/6)

The Transformation

Combine 2+ distinct loops into a single loop

Loop Fusion (2/6)

When to Fuse Loops: Safety Constraints

I. No fusion-preventing dependences

- Def. 6.3: A loop-independent dependence between statements in two different loops is *fusion preventing* if fusing the two loops causes the dependence to be carried by the combined loop in the reverse direction
- Note that distributed loops can always be fused back together

DO I = 1, N A(I) = B(I) + C ENDDO DO I = 1, N D(I) = A(I+1) + E ENDDO DO I = 1, N A(I) = B(I) + C D(I) = A(I+1) + EENDDO

Loop Fusion (3/6)

When to Fuse Loops: Safety Constraints

2. No invalid reordering

 Two loops cannot be fused if there is a path of loop-independent dependences between them that contains a loop or statement that is not being fused with them

PARALLEL DO I = 1, N

$$A(I) = B(I) + 1$$

ENDDO
DO I = 1, N
 $C(I) = A(I) + C(I-1)$
ENDDO
PARALLEL DO I = 1, N
 $D(I) = A(I) + C(I)$
ENDDO

Loop Fusion (4/6)

When to Fuse Loops: Profitability Constraints

3. Separate sequential loops

• Do not fuse sequential loops with parallel loops: The result would be a sequential loop

Loop Fusion (5/6)

When to Fuse Loops: Profitability Constraints

4. No parallelism-inhibiting dependences

 Do not fuse two loops if a fusion would cause a dependence between the two original loops to be carried by the combined loop

		DO I = 1, N A(I+1) = B(I) + C D(I) = A(I) + E ENDDO
--	--	--

Loop Fusion (6/6)

When to Fuse Loops: Satisfying the Constraints

- The problem of minimizing the number of parallel loops using only correct and profitable loop fusion can be modeled as a typed fusion problem
 - Nearly useless description and "proof" on pp. 261–267
 - Cryptic pseudocode spanning pp. 262–263
 - Does not describe what's happening conceptually (!)

Loop Interchange, Part 1 (1/2)

Comparison with Chapter 5

Vectorization: We moved loops to the *innermost* position

The Transformation

- Parallelization: Move dependence-free loops to the *outermost* position
 - As long as a dependence will not be introduced

DO I = 1, N
DO J = 1, M
A(I+1,J) = A(I,J)+B(I,J)
ENDDO
ENDDO

PARALLEL DO J = 1, M DO I = 1, N A(I+1,J) = A(I,J)+B(I,J)ENDDO ENDDO

Loop Interchange, Part 1 (2/2)

Effect on Dependences

- Recall from Chapter 5:
 - 1. Interchange loops \Rightarrow Interchange columns in direction matrix
 - 2. Can interchange iff all rows still have < as first non-= entry

When to Interchange, Part 1

- In a perfect loop nest, a particular loop can be parallelized at the outermost level iff its column in the direction matrix for that nest contains only "=" (Thm. 6.3)
 - Clearly, all "=" won't violate #2 above
 - But are these really the only loops? ("iff"?!)
 - If column contains >, can't move outermost by #2
 - If column contains <, can't parallelize: carries a dependence

Sequentiality Uncovers Parallelism

- If we commit to running a loop sequentially, we may be able to uncover more parallelism inside that loop
 - If we move a loop outward and sequentialize it,
 - Its column is now the first in the direction matrix
 - Remove all rows that now start with a < (deps carried by this loop)
 - Correspond to dependences that carried by the sequential loop
 - Remove its column from the direction matrix
 - Use the revised direction matrix to find parallelism inside this loop

Sequentiality Uncovers Parallelism: Skewing

Effect on Dependences (Recall from §5.9)

Changes some = entries to <</p>

DO I = 2, N+1
DO J = 2, M+1
DO k = 1+I+J, L+I+J

$$A(I,J,k-I-J) = A(I,J-1,k-I-J) \& + A(I-1,J,k-I-J)$$

 $A(I,J,k-I-J+1) = B(I,J,k-I-J) \& + A(I,J,k-I-J) \& + A(I,J,k-I-J)$
ENDDO
ENDDO
ENDDO
ENDDO
 $\begin{bmatrix} < < \\ < = < \\ = = \end{bmatrix}$

Skew innermost loop w.r.t. the two outer loops using the substitution

 $\mathbf{k} = \mathbf{K} + \mathbf{I} + \mathbf{J}$

Sequentiality Uncovers Parallelism: Skewing

Effect on Dependences (Recall from §5.9)

Changes some = entries to <</p>

Now make the innermost loop the outermost (interchange) and sequentialize it.

Both of the inner loops can then be parallelized.

Sequentiality Uncovers Parallelism: Skewing

Skewing is useful for parallelization because it can

- Make it possible to move a loop to the outermost position
- Make a loop carry all the dependences originally carried by the loop w.r.t. which it was skewed
 - Running the outer loop sequentially uncovers parallelism

Multilevel Loop Fusion

Multilevel Loop Fusion

The Transformation

- For imperfectly nested loops,
 - First, distribute loops maximally
 - Then try to fuse perfect nests

Multilevel Loop Fusion

When to Fuse Loop Nests: Difficulties (Example 1)

- Fusion of loop nests is actually NP-complete
- Different loop nests require different permutations
- Permutations can interfere if reassembling distributed loops
- Also memory hierarchy considerations

DO I = 1, N
DO J = 1, M
A(I,J+1) = A(I,J)+C
B(I+1,J) = B(I,J)+D
ENDDO
ENDDO

PARALLEL DO I = 1, N
DO $J = 1$, M
A(I,J+1) = A(I,J)+C
ENDDO
ENDDO
PARALLEL DO $J = 1, M$
DO $I = 1$, N
B(I+1,J) = B(I,J)+D
ENDDO
ENDDO

Multilevel Loop Fusion

```
When to Fuse Loop Nests: Difficulties (Example 2)
 DO I = 1, N ! Can be parallel
 DO J = 1, M ! Can be parallel
  A(I,J) = A(I,J) + X
 ENDDO
 ENDDO
 DO I = 1, N ! Sequential
 DO J = 1, M ! Can be parallel
   B(I+1,J) = A(I,J) + B(I,J)
  ENDDO
 ENDDO
 DO I = 1, N ! Can be parallel
 DO J = 1, M ! Sequential
   C(I,J+1) = A(I,J) + C(I,J)
 ENDDO
 ENDDO
 DO I = 1, N ! Sequential
 DO J = 1, M ! Can be parallel
   D(I+1,J) = B(I+1,J) + C(I,J) + D(I,J)
 ENDDO
 ENDDO
```

I,J

Multilevel Loop Fusion

When to Fuse Loop Nests: Algorithm (Heuristic)

- Try to parallelize individual perfect loop nests (as described earlier)
- Then use Typed Fusion to figure out which outer loops to merge, and repeat the whole procedure for the nests inside the merged outer loops
 - The "type" of a nest has two components:
 - 1. The outermost loop in the resulting nest
 - 2. Whether this loop is sequential or parallel

