Chapter 6 = Allen & Kennedy, Optimizing Compilers for Modern Architectures

Creating Coarse-Grained
Parallelism




Introduction

@

Chapter 6: Focus on parallelism for SMPs
m Contrast with Chapter 5 (vector and superscalar processors)

m Focus on parallelizing outer loops
+ Often contain large blocks of work in each iteration

m Thread creation, barrier synchronization expensive
+ Tradeoff: synchronization overhead vs. parallelism/load balance
Transformations that uncover coarse-grained parallelism
1. Define or review each transformation
2. Contrast with use in Chapter 5 (if applicable)
3. Describe effect on dependences
2. Discuss when it can/should be applied




Overview

€ Transformations on Single Loops

= Privatization, Alignment, Code Replication, Loop Distribution & Fusion

@ Transformations on Perfect Loop Nests

= Loop Interchange, Loop Skewing

# Transformations on Imperfectly Nested Loops

= Multilevel Loop Fusion




. Single-Loop Methods

Privatization Focus on...
Loop Distribution (1) Parallelizing sequential loops
Alignment (2) Increasing granularity of parallel loops

Code Replication
Loop Fusion




I. Single Loop Methods

Scalar Privatization (1/4)

€ The Transformation
= Make a variable used only within an iteration private

1.0
T = A(I
A(D) =
B(1)

ENDDO

DO |

)
B(1)

PARMLEL D6 1 = I

PRIVATE t
t = A(D)
ACD) = B(1)
B(1) = t
END PARALLEL DO

N




I. Single Loop Methods

Scalar Privatization (2/4)

#® Comparison with Chapter 5

= Similar to scalar expansion
+ Also useful in parallelization (p. 243)

= But privatization better for SMPs
m Like scalar expansion, not cost-free

Bgl -1
T = A(I)
A(1) = B(D)
B(I) =T
ENDDO

ENDDO
T = TS(N)

DO I =1, N
T$(1) = AC)
AC) = B(I)
B(1) = T$(I)

PARALLEL DO 1 =
PRIVATE t
t = A(D)
ACD) = B(1)
B(1) = t

END PARALLEL DO

i

N




I. Single Loop Methods

Scalar Privatization (3/4)

@ Effect on Dependences

= Eliminates loop-carried and loop-independent dep’s

associated with a scalar
+ Like scalar expansion
+ Makes loop parallelizable

o [} = . f
T = A,
A(1) = B(D)
B@) =
ENDDO

PARALLEL DO 1 =
PRIVATE t
t = A(D)
ACD) = B(D)
B(I) = t

END PARALLEL DO

i

N




I. Single Loop Methods

Scalar Privatization (4/4)

€ \When to Privatize a Scalar in a Loop Body

= When all dep’s carried by a loop involve a privatizable variable
* Privatizable: Every use follows a definition (in the loop body)
+ Equivalently, no upwards-exposed uses in the loop body
+ Determine privatizability through data flow analysis (or SSA form — p.242)
+ If cannot privatize, try scalar expansion (p. 243)

DO | — A Iy
=

A(l) B()
B(I) =T

ENDDO




I. Single Loop Methods

Array Privatization

@ Make an array used only within an iteration private

PARALLEL DO I = 1, 100

DO 1 - 1 100 PRIVATE t(N)
mE) — % el -
o0 - 2 |l o0 - 2 |

T(J) = TCI-1)+B(1.J) } )t BEd B
ACL.D) =T AL = )

ENDDO ENDDO
ENDDO B ((I=—ilOo)) TN = el
ENDDO

4 Overview of finding privatizable arrays: p. 244



I. Single Loop Methods

Loop Alignment (1/4)

@ Effect on Dependences
= Problem: Source computed on iteration prior to sink

DO I = 2, N A@)= | AR)= | A= | AGB)= | AB)=
A1) = B(DH+C(D)
D(l) = ACl-1H22 0 \\\\;\\\\\\\\:\\\\
ENDDO =A() | =A@Q) | =A@) | =A@ | =A(5)

1 = 2 3 4

s Solution: Compute sources and sinks on same iteration

AQR)= | AB)= | A@)=

A(5)=

A(6)=

A 4 A 4 A 4

A 4

=A(3)

=AQL) | =A@) | =AE)

=A(5)




I. Single Loop Methods

Loop Alignment (2/4)

® The Transformation
= Naive implementation

e [ = 2 N po i -1 I
A(1) = B(+C(I) } IF (i>1) A(i) = B(@i)+C(i)
D) = ACIED)*2.0 IF (i<N) D(i+1) = A(i)*2.0
ENDDO ENDDO

A= | AB)= | A= | A(B)= | A(6)=
& QOverhead due to extra

iteration and conditional
tests can be reduced...

A 4 A 4 A 4 A 4

=AM | FAQ) | FAB) | FAB) | FAG)




I. Single Loop Methods

Loop Alignment (3/4)

® The Transformation
= Improved implementation (Eliminates extra iteration & conditionals)

D@ = @20
o) [ = 2 | DO - 2 N1
A(D) = B(1)+C(1) A(i) = B(i)+C(i)
DCI) = ACl+1)*2_0 } D(i+1) = A(i)*2.0
ENDDO ENDDO
A(N) = B(N)+C(N)

A= | AR)= [ A= | AG)= | AB)=

A 4 A 4 A 4 A 4

=AQL) | =A@) | =AEB) | =AEB) | =A®G)




I. Single Loop Methods

Loop Alignment (4/4)

€ \When NOT to Apply

= Alignment cannot eliminate a carried dependence in a recurrence (p. 248)
= Also alignment conflicts: two dependences can’t be simultaneously aligned

+ Example:
A(R)= A(3)= A(4)= A(R)= A(3)= A(4)=
A 4 A 4 A 4
=A(L)+A(2) | =A@)+AQ) | =A(B)+A(4) =A(1)+A(R) | =AQR)+AB) | =AEB)+A(4)
2 3 4 | = 2 3 4

® When TO Apply

m Applied along with Code Replication, so let’s discuss that first...




I. Single Loop Methods

Code Replication (1/2)

@ Effect on Dependences
= Want to eliminate alignment conflicts by eliminating loop-carried deps

#® The Transformation

= Replace the code at the sink of a loop-carried dependence with the
expression computed at the source

A(2)=expr2

A(3)=expr3

A(4)=exprd

A 4

A(2)=expr2

A(3)=expr3

A(4)=exprd

=A(L)+A(2)

=A(2)+A(3)

=A(3)+A4)

A 4

A 4

A 4

2

3

4

=A(1)+A(2)

=expr2+A(3)

=expr3+A(4)

2

3

4




I. Single Loop Methods

Code Replication (2/2)

DO I =1, N
A(1+1)

X(1)
ENDDO

B(1)+C

A(I+D)+A(D)

h,
Dol -1 N
A(1+1) = B(1)+C

IF (1==1) THEN

t = A(D
ELSE

t - BdliD) e
END IF

X(1) = AC(I+1)+t
ENDDO

® The Transformation

A(2)=expr2 A(3)=expr3 A(4)=exprd

A 4 A 4 A 4

=A(1)+A(2) | =expr2+A(3) | =expr3+A(4)

1 = 2 3 4




I. Single Loop Methods

Alignment & Replication

@ Effect on Dependences
= Both eliminate loop-carried dependences

#® \When to Align Loops and/or Replicate Code
= Obviously, replication has a higher cost; alignment is preferable

= “Alignment, replication, and statement reordering are sufficient to
eliminate all carried dependences in a single loop that contains no
recurrence and in which the distance of each dependence is a constant
independent of the loop index.” (Theorem 6.2)
+ Proved constructively
+ read 86.2.4 for full detail



I. Single Loop Methods

Loop Distribution (“Loop Fission”)

@ Also eliminates carried dependences

= Smaller loop bodies = Decreased granularity
+ This was good in Chapter 5 (vectorization); bad for SMPs

= Converts to loop-independent deps between loops
= = Implicit barrier between loops = Sync overhead
= .. Try privatization, alignment, and replication first

@ Use to separate potentially-parallel code from
necessarily-sequential code in a loop

= Can recover granularity:
+ Use maximal loop distribution, then
+ Recombine (“fuse™) loops...




I. Single Loop Methods

Loop Fusion (1/6)

€ The Transformation
s Combine 2+ distinct loops into a single loop

DOI1=1,N

A(l) = B(
C(l) = A(l
D(l) = A(
ENDDO

st

+X

DOI=1,N
A(l) = B(1)+1
ENDDO
D=1

)
)+C(I-1) distribu> C(l) = A()+C(l-1)
)

ENDDO
DOI=1,N
D(I) = A(l)+X
ENDDO

fuse }-

PARALLELDO =1, N

A(l) = B(1)+1
D(I) = A()+X
ENDDO
D01 = il i

C(l) = A(l)+C(I-1)
ENDDO




I. Single Loop Methods

Loop Fusion (2/6)

€ \When to Fuse Loops: Safety Constraints

= 1. No fusion-preventing dependences

+ Def. 6.3: A loop-independent dependence between statements in two
different loops is fusion preventing if fusing the two loops causes the
dependence to be carried by the combined loop in the reverse direction

+ Note that distributed loops can always be fused back together

DOl =0
ACI) = B(ID) |+ C pon = 1

ENDDO ACDD) = B + C

Do I -1 N } DCD) | = AC(1+D) + E
DCI) = A(1+1) + E ENDDO

ENDDO




I. Single Loop Methods

Loop Fusion (3/6)

€ \When to Fuse Loops: Safety Constraints

= 2. No invalid reordering

+ Two loops cannot be fused if there is a path of loop-independent
dependences between them that contains a loop or statement that is
not being fused with them

PARALLEL DO I

= R@) —B@ 1
ENDDO
e 1] =l ¥

x C(ID) = A(I) + C(I-1)
ENDDO
ERALEL BE [ = il Y

D(1) = ACI) + C(1)
ENDDO

I
S
=




I. Single Loop Methods

Loop Fusion (4/6)

€ \When to Fuse Loops: Profitability Constraints

m 3. Separate sequential loops

+ Do not fuse sequential loops with parallel loops:
The result would be a sequential loop




I. Single Loop Methods

Loop Fusion (5/6)

€ \When to Fuse Loops: Profitability Constraints

= 4. No parallelism-inhibiting dependences

+ Do not fuse two loops if a fusion would cause a dependence between
the two original loops to be carried by the combined loop

DOl =0
AdliD - B@) T © pon = 1
ENDDO A@liD - B@) ¢
Do I -1 N ’ D(I) = A(1) + E
DCI) = A(1) + E ENDDO
ENDDO




I. Single Loop Methods

Loop Fusion (6/6)

€ \When to Fuse Loops: Satisfying the Constraints

s The problem of minimizing the number of parallel loops
using only correct and profitable loop fusion can be modeled
as a typed fusion problem

+ Nearly useless description and “proof” on pp. 261-267

+ Cryptic pseudocode spanning pp. 262—263
m Does not describe what’'s happening conceptually (1)




Il. Perfect Loop Nests

Loop Interchange
(Loop Skewing)




I1. Perfect Loop Nests

Loop Interchange, Part 1 (1/2)

€® Comparison with Chapter 5
m Vectorization: We moved loops to the /nnermost position

@ The Transformation

m Parallelization: Move dependence-free loops to the outermost position
+ As long as a dependence will not be introduced

DO 1 =1, N
DO J =1, M
A(1+1,3) = A(1,2)+B(1,d)
ENDDO
ENDDO

>

PARALLEL DO J = 1, M
DO 1 = 1, N
A(1+1,3) = A(1,2)+B(1,d)
ENDDO
ENDDO




I1. Perfect Loop Nests

Loop Interchange, Part 1 (2/2)

@ Effect on Dependences

= Recall from Chapter 5:
1. Interchange loops = Interchange columns in direction matrix

2. Can interchange iff all rows still have < as first non-= entry

® \When to Interchange, Part 1
» In a perfect loop nest, a particular loop can be parallelized
at the outermost level iff its column in the direction matrix
for that nest contains only “=" (m.e23)
+ Clearly, all “=" won't violate #2 above

+ But are these really the only loops? ( “iff"?!)
m |If column contains >, can’t move outermost by #2
m If column contains <, can’t parallelize: carries a dependence




I1. Perfect Loop Nests

Sequentiality Uncovers Parallelism

@ |If we commit to running a loop sequentially, we may be able to

uncover more parallelism inside that loop

= If we move a loop outward and sequentialize it,
+ |ts column is now the first in the direction matrix

+ Remove all rows that now start with a < (deps carried by this loop)
m Correspond to dependences that carried by the sequential loop

+ Remove its column from the direction matrix
+ Use the revised direction matrix to find parallelism inside this loop

DO I =1, N
DO J = 1, M
DO K =1, L
A(1+1,3,K)
B9 G
C(I+1,J+1,K+1)
ENDDO <
ENDDO {
ENDDO

<

ACl,J.K) + Q
Bl 19 & F
L. J.) + s

PARALLEL DO J = 1, M
DEEG=
A(1+1,3,K) = A(1,J,K) + Q
B(1,J,K+1) = B(1,J,K) + R

SR e =], [O)5
ENDDO
ENDDO




I1. Perfect Loop Nests

Sequentiality Uncovers Parallelism: Skewing

# Effect on Dependences (Recall from 85.9)
m Changes some = entries to <

DO I = 2, N+1 DO I = 2, N+1
DO J = 2, M+1 DO J = 2, M+1
DO K =1, L DO k = 1+1+J, L+1+J
A(1,3,K) = A(1,3-1,K) & A(1,J,k-1-3) = A(1,J-1,k-
+ A(1-1,3,K) + A(1-1,J,k-
A(l,J,K+1) = B(1,J,K) & }' A(l,J,k-1-3+1) = B(I,Jd,k-
+ A(1,J,K) . L e
ENDDO ENDDO
ENDDO e ENDDO S
ENDDO R ENDDO il
loop-independent—> = = = =

Skew innermost loop w.r.t. the two outer loops using the substitution

k =K+ 1+ J




I1. Perfect Loop Nests

Sequentiality Uncovers Parallelism: Skewing

# Effect on Dependences (Recall from 85.9)
m Changes some = entries to <

DO k = 5, N+M+1 DO 1 = 2, N+1
DO I = MAX(2,k-M-L-1), MIN(N+1,k-L-2) DO J = 2, M+1
DO J = MAX(2,k-1-L), MIN(M+1,k-1-1) DO k = 1+1+J, L+1+J
AQL T k=l=0) ll= @), DEL k= 1=3) & N koY S N e
+ACIFL, 3, k=1-0) 1 AL )
ACL,J,k-1-3%1) = BQ1,J k=1-2) & < ACE,J,k-1+J+1) = B(I ,J k-
+ AL I k-1-2) L 4]+ AQ k-
ENDDO ENDDO
ENDDO . ENDDO S
Both inner loops can =l = =

ENDDO ENDDO

be parallelized! e

k-
k-
I-
-

I-

1-3]
-J)
-J)

J)
)

&

&

Now make the innermost loop the outermost (interchange) and sequentialize it.

Both of the inner loops can then be parallelized.




I1. Perfect Loop Nests

Sequentiality Uncovers Parallelism: Skewing

@ Skewing is useful for parallelization because it can
= Make it possible to move a loop to the outermost position

= Make a loop carry all the dependences originally carried by the loop w.r.t.
which it was skewed

+ Running the outer loop sequentially uncovers parallelism




I[1l. Imperfectly Nested Loops

Multilevel Loop Fusion




I11. Imperfectly Nested Loops

Multilevel Loop Fusion

® The Transformation

= For imperfectly nested loops,
+ First, distribute loops maximally
+ Then try to fuse perfect nests




mperfectly Nested Loops

Multilevel Loop Fusion

® When to Fuse Loop Nests: Difficulties (Example 1)
m Fusion of loop nests is actually NP-complete

» Different loop nests require different permutations

= Permutations can interfere if reassembling distributed loops
= Also memory hierarchy considerations

DO

EN

1 1 N
Do J — 1 M

AL by = Il )t

B(I+1,J) = B(l,J)+D
ENDDO
DDO

PARALLEL DO I = 1, N
DOJ =1, M
A(l,J+1) = A(1,0)+C
ENDDO

ENDDO
PARALLEL DO J = 1, M
DOl = N

B(1+1,J) = B(1,J)+D
ENDDO
ENDDO




I11. Imperfectly Nested Loops

Multilevel Loop Fusion

® When to Fuse Loop Nests: Difficulties (Example 2)

DO 1 =1, N ! Can be parallel

DO J =1, M I Can be parallel
A(1,d) = A(1,d) + X

ENDDO

ENDDO

DO I =1, N ! Sequential

DO =0 N i Can be parallel
B(1+1,J) = A(1,d) + B(1,d)

ENDDO

ENDDO

DO 1 =1, N ! Can be parallel
DO J =1, M ! Sequential

C(l,J+1) = A(l1,J) + C(1,d)

ENDDO

ENDDO

DO I =1, N ! Sequential

DO J = 1, M i Can be parallel

D(1+1,J) = B(1+1,J) + C(1,J) + D(1,d)
ENDDO
ENDDO




I11. Imperfectly Nested Loops

Multilevel Loop Fusion

® When to Fuse Loop Nests: Algorithm (Heuristic)
s Try to parallelize individual perfect loop nests (as described earlier)
= Then use Typed Fusion to figure out which outer loops to merge, and

repeat the whole procedure for the nests inside the merged outer loops

¢+ The “type” of a nest has two components:
1. The outermost loop in the resulting nest
2. Whether this loop is sequential or parallel

PARALLEL DO I = 1, N
DOJ =1, M
A(1+1,J+1) = A(I+1,3) + C
ENDDO

ENDDO
PARALLEL DO J = 1, M
Bloj e aa

XC1,3) = ACLLD +C
ENDDO
ENDDO

«—— Type is (I-loop, parallel)

«—— Type is (J-loop, parallel)




